본문으로 바로가기
728x90
 

공공데이터 포털 Open API 사용하기 : 보건복지부_코로나19 연령별·성별감염_현황

공공데이터 포털 국가에서 보유하고 있는 다양한 데이터를『공공데이터의 제공 및 이용 활성화에 관한 법률(제11956호)』에 따라 개방하여 국민들이 보다 쉽고 용이하게 공유•활용할 수 있도록

jvvp.tistory.com

데이터 파싱하기

사용할 데이터는 누적된 수치를 나타내는 데이터입니다. 

우선 XML로 응답 받은 데이터를 저장하고 읽어서 JSON 으로 파싱해보겠습니다.

 

일일 트래픽이 10000건으로 제한되어있습니다.

 

 

10000건의 트래픽은 적지 않지만, 테스트할 때는 응답받은 데이터를 파일로 저장하는 것도 하나의 방법입니다.

# Tip

xml.dom.minidom : xml을 출력할 때 들여쓰기를 해줍니다.
'''
보건복지부_코로나19 연령별·성별감염_현황
'''
import requests
from urllib import parse
from bs4 import BeautifulSoup as bs
import datetime
import json
import xml.dom.minidom

url = 'http://openapi.data.go.kr/openapi/service/rest/Covid19/getCovid19GenAgeCaseInfJson'
key = 'gIQmqloKO%2B9e8xRB3iSW6t9uW%2FKem82g4ELNU%2F3dzkhOfcf5%2BnHjdamtop%2FCRAWlyyTlhk7W1F0Jm1GX9w%3D%3D'

today = datetime.datetime.now().strftime('%Y%m%d')

queryParams = f'?{parse.quote_plus("ServiceKey")}={key}&' + parse.urlencode({ 
    parse.quote_plus('pageNo') : '1', 
    parse.quote_plus('numOfRows') : '10', 
    parse.quote_plus('startCreateDt') : today,
    parse.quote_plus('endCreateDt') : today
    })

res = requests.get(url + queryParams)
xml = xml.dom.minidom.parseString(res.text)
pretty_xml = xml.toprettyxml()
with open('result.xml', 'w', encoding='utf-8') as f:
    f.write(pretty_xml)
더보기
<?xml version="1.0" ?>
<response>
	<header>
		<resultCode>00</resultCode>
		<resultMsg>NORMAL SERVICE.</resultMsg>
	</header>
	<body>
		<items>
			<item>
				<confCase>222</confCase>
				<confCaseRate>1.64</confCaseRate>
				<createDt>2020-07-15 10:40:12.153</createDt>
				<criticalRate>0</criticalRate>
				<death>0</death>
				<deathRate>0.00</deathRate>
				<gubun>0-9</gubun>
				<seq>2026</seq>
				<updateDt>null</updateDt>
			</item>
			<item>
				<confCase>753</confCase>
				<confCaseRate>5.56</confCaseRate>
				<createDt>2020-07-15 10:40:12.153</createDt>
				<criticalRate>0</criticalRate>
				<death>0</death>
				<deathRate>0.00</deathRate>
				<gubun>10-19</gubun>
				<seq>2025</seq>
				<updateDt>null</updateDt>
			</item>
			<item>
				<confCase>3495</confCase>
				<confCaseRate>25.79</confCaseRate>
				<createDt>2020-07-15 10:40:12.153</createDt>
				<criticalRate>0</criticalRate>
				<death>0</death>
				<deathRate>0.00</deathRate>
				<gubun>20-29</gubun>
				<seq>2024</seq>
				<updateDt>null</updateDt>
			</item>
			<item>
				<confCase>1640</confCase>
				<confCaseRate>12.1</confCaseRate>
				<createDt>2020-07-15 10:40:12.152</createDt>
				<criticalRate>0.12</criticalRate>
				<death>2</death>
				<deathRate>0.69</deathRate>
				<gubun>30-39</gubun>
				<seq>2023</seq>
				<updateDt>null</updateDt>
			</item>
			<item>
				<confCase>1782</confCase>
				<confCaseRate>13.15</confCaseRate>
				<createDt>2020-07-15 10:40:12.152</createDt>
				<criticalRate>0.17</criticalRate>
				<death>3</death>
				<deathRate>1.04</deathRate>
				<gubun>40-49</gubun>
				<seq>2022</seq>
				<updateDt>null</updateDt>
			</item>
			<item>
				<confCase>2411</confCase>
				<confCaseRate>17.79</confCaseRate>
				<createDt>2020-07-15 10:40:12.152</createDt>
				<criticalRate>0.62</criticalRate>
				<death>15</death>
				<deathRate>5.19</deathRate>
				<gubun>50-59</gubun>
				<seq>2021</seq>
				<updateDt>null</updateDt>
			</item>
			<item>
				<confCase>1769</confCase>
				<confCaseRate>13.05</confCaseRate>
				<createDt>2020-07-15 10:40:12.152</createDt>
				<criticalRate>2.32</criticalRate>
				<death>41</death>
				<deathRate>14.19</deathRate>
				<gubun>60-69</gubun>
				<seq>2020</seq>
				<updateDt>null</updateDt>
			</item>
			<item>
				<confCase>902</confCase>
				<confCaseRate>6.66</confCaseRate>
				<createDt>2020-07-15 10:40:12.152</createDt>
				<criticalRate>9.31</criticalRate>
				<death>84</death>
				<deathRate>29.07</deathRate>
				<gubun>70-79</gubun>
				<seq>2019</seq>
				<updateDt>null</updateDt>
			</item>
			<item>
				<confCase>577</confCase>
				<confCaseRate>4.26</confCaseRate>
				<createDt>2020-07-15 10:40:12.152</createDt>
				<criticalRate>24.96</criticalRate>
				<death>144</death>
				<deathRate>49.83</deathRate>
				<gubun>80 이상</gubun>
				<seq>2018</seq>
				<updateDt>null</updateDt>
			</item>
			<item>
				<confCase>7607</confCase>
				<confCaseRate>56.14</confCaseRate>
				<createDt>2020-07-15 10:40:12.152</createDt>
				<criticalRate>1.79</criticalRate>
				<death>136</death>
				<deathRate>47.06</deathRate>
				<gubun>여성</gubun>
				<seq>2017</seq>
				<updateDt>null</updateDt>
			</item>
			<item>
				<confCase>5944</confCase>
				<confCaseRate>43.86</confCaseRate>
				<createDt>2020-07-15 10:40:12.152</createDt>
				<criticalRate>2.57</criticalRate>
				<death>153</death>
				<deathRate>52.94</deathRate>
				<gubun>남성</gubun>
				<seq>2016</seq>
				<updateDt>null</updateDt>
			</item>
		</items>
		<numOfRows>10</numOfRows>
		<pageNo>1</pageNo>
		<totalCount>11</totalCount>
	</body>
</response>

 

데이터 구조를 변형하여 XML 을 JSON 으로 파싱해보겠습니다.

BeautifulSoup 모듈을 이용하면 tag에 접근하는 것이 간단합니다.

 

기본적인 형태. 

# Tip
json.dump
indent='\t' : 간격을 지정합니다. (\t 은 탭을 의미)
ensure_ascii=False : 문자열 그대로 저장합니다. (True 이면, 한글 저장시 Unicode 로 인코딩)
'''
보건복지부_코로나19 연령별·성별감염_현황
'''
import bs4
from bs4 import BeautifulSoup as bs
import json
import xml.dom.minidom

with open('result.xml', 'r', encoding='utf-8') as f:
    xml = bs(f.read(), 'html.parser')

json_data = []
for item in xml.items:
    if isinstance(item, bs4.element.Tag):
        data = {
            'confcase': item.confcase.string,
            'confcaserate': item.confcaserate.string,
            'createdt': item.createdt.string,
            'criticalrate': item.criticalrate.string,
            'death': item.death.string,
            'deathrate': item.deathrate.string,
            'gubun': item.gubun.string,
            'seq': item.seq.string,
            'updatedt': item.updatedt.string
        }
        json_data.append(data)

with open('result.json', 'w', encoding='utf-8') as f:
    json.dump(json_data, f, indent='\t', ensure_ascii=False)
더보기
[
	{
		"confcase": "222",
		"confcaserate": "1.64",
		"createdt": "2020-07-15 10:40:12.153",
		"criticalrate": "0",
		"death": "0",
		"deathrate": "0.00",
		"gubun": "0-9",
		"seq": "2026",
		"updatedt": "null"
	},
	{
		"confcase": "753",
		"confcaserate": "5.56",
		"createdt": "2020-07-15 10:40:12.153",
		"criticalrate": "0",
		"death": "0",
		"deathrate": "0.00",
		"gubun": "10-19",
		"seq": "2025",
		"updatedt": "null"
	},
	{
		"confcase": "3495",
		"confcaserate": "25.79",
		"createdt": "2020-07-15 10:40:12.153",
		"criticalrate": "0",
		"death": "0",
		"deathrate": "0.00",
		"gubun": "20-29",
		"seq": "2024",
		"updatedt": "null"
	},
	{
		"confcase": "1640",
		"confcaserate": "12.1",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "0.12",
		"death": "2",
		"deathrate": "0.69",
		"gubun": "30-39",
		"seq": "2023",
		"updatedt": "null"
	},
	{
		"confcase": "1782",
		"confcaserate": "13.15",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "0.17",
		"death": "3",
		"deathrate": "1.04",
		"gubun": "40-49",
		"seq": "2022",
		"updatedt": "null"
	},
	{
		"confcase": "2411",
		"confcaserate": "17.79",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "0.62",
		"death": "15",
		"deathrate": "5.19",
		"gubun": "50-59",
		"seq": "2021",
		"updatedt": "null"
	},
	{
		"confcase": "1769",
		"confcaserate": "13.05",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "2.32",
		"death": "41",
		"deathrate": "14.19",
		"gubun": "60-69",
		"seq": "2020",
		"updatedt": "null"
	},
	{
		"confcase": "902",
		"confcaserate": "6.66",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "9.31",
		"death": "84",
		"deathrate": "29.07",
		"gubun": "70-79",
		"seq": "2019",
		"updatedt": "null"
	},
	{
		"confcase": "577",
		"confcaserate": "4.26",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "24.96",
		"death": "144",
		"deathrate": "49.83",
		"gubun": "80 이상",
		"seq": "2018",
		"updatedt": "null"
	},
	{
		"confcase": "7607",
		"confcaserate": "56.14",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "1.79",
		"death": "136",
		"deathrate": "47.06",
		"gubun": "여성",
		"seq": "2017",
		"updatedt": "null"
	},
	{
		"confcase": "5944",
		"confcaserate": "43.86",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "2.57",
		"death": "153",
		"deathrate": "52.94",
		"gubun": "남성",
		"seq": "2016",
		"updatedt": "null"
	}
]

 

gubun Key를 밖으로 빼서 해당 데이터 묶음을 식별하는게 좋아보입니다.

'''
보건복지부_코로나19 연령별·성별감염_현황
'''
import bs4
from bs4 import BeautifulSoup as bs
import json
import xml.dom.minidom

with open('result.xml', 'r', encoding='utf-8') as f:
    xml = bs(f.read(), 'html.parser')

json_data = {}
for item in xml.items:
    if isinstance(item, bs4.element.Tag):
        json_data.setdefault(item.gubun.string, {
            'confcase': item.confcase.string,
            'confcaserate': item.confcaserate.string,
            'createdt': item.createdt.string,
            'criticalrate': item.criticalrate.string,
            'death': item.death.string,
            'deathrate': item.deathrate.string,
            'seq': item.seq.string,
            'updatedt': item.updatedt.string
        })

with open('result2.json', 'w', encoding='utf-8') as f:
    json.dump(json_data, f, indent='\t', ensure_ascii=False)
더보기
{
	"0-9": {
		"confcase": "222",
		"confcaserate": "1.64",
		"createdt": "2020-07-15 10:40:12.153",
		"criticalrate": "0",
		"death": "0",
		"deathrate": "0.00",
		"seq": "2026",
		"updatedt": "null"
	},
	"10-19": {
		"confcase": "753",
		"confcaserate": "5.56",
		"createdt": "2020-07-15 10:40:12.153",
		"criticalrate": "0",
		"death": "0",
		"deathrate": "0.00",
		"seq": "2025",
		"updatedt": "null"
	},
	"20-29": {
		"confcase": "3495",
		"confcaserate": "25.79",
		"createdt": "2020-07-15 10:40:12.153",
		"criticalrate": "0",
		"death": "0",
		"deathrate": "0.00",
		"seq": "2024",
		"updatedt": "null"
	},
	"30-39": {
		"confcase": "1640",
		"confcaserate": "12.1",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "0.12",
		"death": "2",
		"deathrate": "0.69",
		"seq": "2023",
		"updatedt": "null"
	},
	"40-49": {
		"confcase": "1782",
		"confcaserate": "13.15",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "0.17",
		"death": "3",
		"deathrate": "1.04",
		"seq": "2022",
		"updatedt": "null"
	},
	"50-59": {
		"confcase": "2411",
		"confcaserate": "17.79",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "0.62",
		"death": "15",
		"deathrate": "5.19",
		"seq": "2021",
		"updatedt": "null"
	},
	"60-69": {
		"confcase": "1769",
		"confcaserate": "13.05",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "2.32",
		"death": "41",
		"deathrate": "14.19",
		"seq": "2020",
		"updatedt": "null"
	},
	"70-79": {
		"confcase": "902",
		"confcaserate": "6.66",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "9.31",
		"death": "84",
		"deathrate": "29.07",
		"seq": "2019",
		"updatedt": "null"
	},
	"80 이상": {
		"confcase": "577",
		"confcaserate": "4.26",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "24.96",
		"death": "144",
		"deathrate": "49.83",
		"seq": "2018",
		"updatedt": "null"
	},
	"여성": {
		"confcase": "7607",
		"confcaserate": "56.14",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "1.79",
		"death": "136",
		"deathrate": "47.06",
		"seq": "2017",
		"updatedt": "null"
	},
	"남성": {
		"confcase": "5944",
		"confcaserate": "43.86",
		"createdt": "2020-07-15 10:40:12.152",
		"criticalrate": "2.57",
		"death": "153",
		"deathrate": "52.94",
		"seq": "2016",
		"updatedt": "null"
	}
}

 

데이터를 활용해서 그래프를 그려보고 싶지 않으신가요?

 

공공데이터 포털 Open API 사용하기 : 보건복지부_코로나19 연령별·성별감염_현황 -3 : 그래프 그리�

연령대별 확진자 지난 포스팅에서 파싱한 JSON 데이터를 사용합니다. 각 Key별 7월 15일 까지의 누적된 수치입니다. 더보기 { "0-9": { "confcase": "222", "confcaserate": "1.64", "createdt": "2020-07-15 10:..

jvvp.tistory.com